

Syntheses and Multi-NMR Study of fac- and mer-OsO₃F₂(NCCH₃) and the X-ray Crystal Structure ($n = 2$) and Raman Spectrum ($n = 0$) of $fac\text{-}OsO₃F₂(NCCH₃) · nCH₃CN$

Michael J. Hughes, Michael Gerken,[†] Hélène P. A. Mercier, and Gary J. Schrobilgen*

Department of Chemistry, McMaster University, Hamilton, Ontario, L8S 4M1, Canada. [†] Present address: Department of Chemistry and Biochemistry, The University of Lethbridge, Lethbridge AB T1K 3M4, Canada

Received February 25, 2010

Dissolution of the infinite chain polymer, $(\text{OsO}_3\text{F}_2)_{\circ\circ}$, in CH₃CN solvent at -40 °C followed by solvent removal under vacuum at -40 °C yielded *fac*-OsO₃F₂(NCCH₃) · *n*CH₃CN (*n* ≥ 2). Continued pumping at -40 °C with removal of
uncoordinated CH₂CN vielded *fac*-OsO₂F₂(NCCH₂). Both *fac*-OsO₂F₂(NCCH₂) · *n*CH₂CN a uncoordinated CH₃CN yielded fac-OsO₃F₂(NCCH₃). Both fac-OsO₃F₂(NCCH₃) \cdot nCH₃CN and fac-OsO₃F₂(NCCH₃) are yellow-brown solids and were characterized by low-temperature (-150 °C) Raman spectroscopy. The crystal structure (−173 °C) of *fac*-OsO₃F₂(NCCH₃) 2CH₃CN consists of two co-crystallized CH₃CN molecules and a
pseudo-octabedral OsO∍E∍ NCCH₂ molecule in which three oxygen atoms are in a facial arrangement and CH₂ pseudo-octahedral OsO₃F₂ NCCH₃ molecule in which three oxygen atoms are in a facial arrangement and CH₃CN is coordinated trans to an oxygen atom in an end-on fashion. The Os---N bond length $(2.205(3)$ Å) is among the shortest M---N adduct bonds observed for a d⁰ transition metal oxide fluoride. The ¹⁹F NMR spectrum of $(OsO_3F_2)_{\infty}$ in CH₃CN solvent (-40 °C) is a singlet (-99.6 ppm) corresponding to fac-OsO₃F₂(NCCH₃). The ¹H, ¹⁵N, ¹³C, and ¹⁹F NMR
spectra_of_¹⁵N-enriched_OsO₂F₂(NCCH₂)_were_recorded_in_SO₂ClF_solvent_(-84_°C)_Nitrogen-15 spectra of ¹⁵N-enriched OsO₃F₂(NCCH₃) were recorded in SO₂CIF solvent (-84 °C). Nitrogen-15 enrichment resulted in splitting of the ¹⁹F resonance of *fac*-OsO₃F₂(¹⁵NCCH₃) into a doublet (²J(¹⁵N-¹⁹F), 21 Hz). In addition, a
doublet of doublets (²J/¹⁹F_{ex}-1⁹F_{ex}), 134 Hz^{, 2}J/¹⁵N--¹⁹F_{ex}), 18 Hz doublet of doublets $(^2$ $/(^{19}F_{ax} - ^{19}F_{eq})$, 134 Hz; 2 $/(^{15}N - ^{19}F_{eq})$, 18 Hz) and a doublet $(^2$ $/(^{19}F_{ax} - ^{19}F_{eq})$, 134 Hz) were
observed in the ¹⁹F NMR spectrum that have been assigned to *mer-*OSO₂F observed in the ¹⁹F NMR spectrum that have been assigned to *mer-*OsO₃F₂(¹⁵NCCH₃); however, coupling of ¹⁵N to
the axial fluorine-on-osmium environment could not be resolved. The nitrogen atom of CH₂CN is coo the axial fluorine-on-osmium environment could not be resolved. The nitrogen atom of CH₃CN is coordinated trans to a fluorine ligand in the mer-isomer. Quantum-chemical calculations at the SVWN and B3LYP levels of theory were used to calculate the energy-minimized gas-phase geometries, vibrational frequencies of fac- and mer-OsO₃F₂(NCCH₃) and of CH₃CN. The relative stabilities of the mer- and fac-isomers have been determined and are in accordance with the solution NMR assignments.

Introduction

The Lewis acid behavior of $(OsO₃F₂)_{\infty}$ has been established by the syntheses of the $\text{Ag}^{+,1}$ $\text{Cs}^{+,1,2}$ K⁺,^{1,2} Na⁺,² $N(CH_3)_4^{+3}NO^{+3}Rb^{+2}XeF_5^{+4}$ and $Xe_2F_{11}^{+4}$ salts of fac- $\overline{\text{OsO}_3\text{F}_3}$ from their respective fluorides. The facial geometry of $\overline{OsO_3F_3}^-$ was determined from the vibrational spectra of the Cs^+ , K^+ , Rb⁺, and Na⁺ salts² and was confirmed by the X-ray crystal structure and Raman spectra of $[N(CH_3)_4]$ -[OsO₃F₃]³ and [M][OsO₃F₃] (M = XeF₅⁺, Xe₂F₁₁⁺).⁴

Acetonitrile forms Lewis base adducts with high-oxidation state d⁰ transition metal fluorides [CH₃CN·MF₄(NCl)]

 $(M = Mo₂⁵ W⁶)$, oxide fluorides $MoOF₄(NCCH₃)$, 7 ReO₂F₃- $(NCCH₃)$, N^8 TcO₂F₃(NCCH₃), N^9 and WOF₄(NCCH₃), N^1 as well as with the sulfide fluoride, $WSF_4(NCCH_3)$.¹¹ The crystal structures of $\text{[CH}_3\text{CN}\cdot\text{MF}_4(\text{NC})\quad$ $(\text{M} = \text{Mo},^5 \text{W}^6)$ and $ReO_3F(NCCH_3)_2 \cdot CH_3CN^8$ have CH_3CN coordinated to the $d⁰$ metal through the nitrogen electron lone pair to give linear M---N- $C-C$ arrangements. Both CH₃CN ligands of ReO₃F- $(NCCH₃)₂ \cdot CH₃CN⁸$ coordinate cis to one another and trans to

^{*}To whom correspondence should be addressed. E-mail: schrobil@ mcmaster.ca.

⁽¹⁾ Hepworth, M. A.; Robinson, P. L. J. Inorg. Nucl. Chem. 1957, 4, 24–29.

⁽²⁾ Jones, P. J.; Levason, W.; Tajik, M. J. Fluorine Chem. 1984, 25, 195–201.

⁽³⁾ Gerken, M.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2000, 39, 4244–4255.

⁽⁴⁾ Hughes, M. J.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. $2010, 49, 3501 - 3515.$

⁽⁵⁾ Fenske, D.; Völp, K.; Dehnicke, K. Z. Naturforsch., B: Chem. Sci. 1987, 42, 1398–1402.

⁽⁶⁾ Rhiel, M.; Wocadlo, S.; Massa, W.; Dehnicke, K. Z. Anorg. Allg. Chem. 1996, 622, 1195–1199.

⁽⁷⁾ Buslaev, I. A.; Kokunov, Y. V.; Bochkaryova, V. A.; Shustorovich, E. M. J. Inorg. Nucl. Chem. 1972, 34, 2861–2865. (8) Casteel, W. J.; Dixon, D. A.; LeBlond, N.; Lock, P. E.; Mercier,

H. P. A.; Schrobilgen, G. J. Inorg. Chem. 1999, 38, 2340–2358. (9) Casteel, W. J.; Dixon, D. A.; LeBlond, N.; Mercier, H. P. A.;

Schrobilgen, G. J. Inorg. Chem. 1998, 37, 340-353.

⁽¹⁰⁾ Buslaev, I. A.; Kokunov, Y. V.; Bochkareva, V. A. J. Struct. Chem. 1972, 13, 560–575; Zh. Strukt. Khim. 1972, 13, 611-616.

⁽¹¹⁾ Nieboer, J.; Hillary, W.; Yu, X.; Mercier, H. P. A.; Gerken, M.Inorg. Chem. 2009, 48, 11251–11258.

two of the three facial oxygen atoms. The only examples of Os(VIII) coordinated to nitrogen are adducts of OsO4, e.g., $OsO_4(NH_3),^{12} OsO_4(NC_5H_5),^{13} OsO_4(NC_7H_{13}),^{14}$ and OsO_4L $(L = NC₉H₇, N₂C₈H₆, and 1,2-C₄H₄N₂)$,¹⁵ as well as nitridoderivatives, e.g., [A][OsO₃N] (A = $(C_6H_5)_4As^{+, 16}Cs^{+, 17}$ $K^{+,18,19}$ and H^{+12}), OsNCl₃(PPh₃₎₂,²⁰ and OsO₂(OH)N.²¹ Prior to this work, there were no examples of nitrogen bases coordinated to Os(VIII) oxide fluorides known.

The current work describes the synthesis and characterization by multi-NMR and Raman spectroscopy, and singlecrystal X-ray diffraction of $fac\text{-}OsO₃F₂(NCCH₃)$. The $mer-OsO₃F₂(NCCH₃)$ isomer in which the oxygen atoms are in a meridional arrangement and the $CH₃CN$ ligand is coordinated trans to fluorine has also been characterized in solution by multi-NMR spectroscopy along with *fac*- $OsO₃F₂(NCCH₃).$

Results and Discussion

Syntheses of fac-OsO₃F₂(NCCH₃), fac-OsO₃F₂(NCCH₃) nCH_3CN (n \geq 2), and mer-OsO₃F₂(NCCH₃). Osmium trioxide difluoride, $(\text{OsO}_3\text{F}_2)_{\infty}$, dissolves in CH₃CN at -40° C according to eq 1 to give an orange-brown solution.

$$
\text{OsO}_3\text{F}_2 + \text{CH}_3\text{CN} \xrightarrow{-40^\circ\text{C}} \text{fac-OsO}_3\text{F}_2(\text{NCCH}_3) \quad (1)
$$

 -40° C
Removal of excess CH₃CN under dynamic vacuum at -40° C initially yielded yellow-brown $fac\text{-}OSO_3F_2(NCCH_3) \cdot nCH_3CN$, which was confirmed by X-ray crystallography and Raman spectroscopy (Supporting Information, Table S1). Acetonitrile in the crystal lattice was removed by continued pumping for 3 h at -40 °C to yield yellow-brown fac- $O₃F₂(NCCH₃)$ (see Raman Spectroscopy) which did not dissociate after a further 3 h of pumping at -40 °C. The unsolvated complex is stable at room temperature for at least several days and is very soluble in $CH₃CN$ at -40 °C and slightly soluble in SO₂ClF at -40 and -80 °C. The solution NMR spectra (see NMR Spectroscopy) revealed the presence of $fac\text{-}OSO_3F_2(NCCH_3)$ as the major product, but also the presence of $mer-OsO₃F₂(NCCH₃)$. Removal of excess SO₂ClF under dynamic vacuum at -80 °C yielded only *fac*- $OsO₃F₂(NCCH₃)$ (Supporting Information, Table S1).

X-ray Crystal Structure of $fac-OsO₃F₂(NCCH₃)$.
2CH₃CN. Details of the data collection parameters and other crystallographic information are provided in Table 1. Bond lengths and bond angles are listed in Table 2.

- (12) Hair, M. L.; Robinson, P. L. J. Chem. Soc. 1960, 2775–2776.
- (13) Griffith, W. P.; Rossetti, R. J. Chem. Soc., Dalton Trans. 1972, 1449– 1453.
- (14) Griffith, W. P.; Skapski, A. C.; Woode, K. A.; Wright, M. P. Inorg. Chim. Acta 1978, 31, L413–L414.
- (15) Cleare, M. J.; Hydes, P. C.; Griffith, W. P.; Wright, M. P. J. Chem. Soc., Dalton Trans. 1977, 941–944.
- (16) Müller, V. A.; Bollmann, F.; Baran, E. J. Z. Anorg. Allg. Chem. 1969, 370, 238–247.
- (17) Pastuszak, R.; L'Haridon, P.; Marchand, R.; Laurent, Y. Acta Crystallogr., Sect B. 1982, 38, 1427–1430.
- (18) Clifford, A. F.; Kobayashi, C. S. Inorg. Synth. 1960, 6, 204–208. (19) Schmidt, K. H.; Flemming, V.; Müller, A. Spectrochim. Acta, Part A 1975, 31, 1913–1919.
- (20) Griffith, W. P.; Pawson, D. J. Chem. Soc., Chem. Commun. 1973, 418–419.
- (21) Griffith, W. P. J. Chem. Soc. 1965, 3694–3697.

Table 1. Summary of Crystal Data and Refinement Results for fac -OsO₃F₂- $(NCCH₃)$ \cdot $2CH₃CN$

chem formula	$C_6F_2H_9N_3O_3O_8$
space group	Pnma (No. 62)
a(A)	7.7995(2)
b (A)	14.7327(4)
c(A)	9.5210(2)
$V(A^3)$	1095.2(1)
molecules/unit cell	4
mol wt $(g \text{ mol}^{-1})$	1597.45
calcd density (g cm ^{-3})	2.425
$T({}^{\circ}C)$	-173
μ (mm ⁻¹)	11.68
R_1^a	0.0178
wR_2^b	0.0413

^aR₁ is defined as $\sum ||F_{\rm o} - F_{\rm g}|| / \sum |F_{\rm o}|$ for $I > 2\sigma(I)$. ^bwR₂ is defined as $\{\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2\}^{V_2}$ for $I > 2\sigma(I)$.

The crystal structure (Figure 1a) is comprised of monomeric $OsO₃F₂$ coordinated to a CH₃CN molecule through the nitrogen atom to give pseudo-octahedral coordination at osmium. In addition, there are two uncoordinated, symmetry-related $CH₃CN$ molecules in the asymmetric unit. The $OsO₃F₂(NCCH₃)$ adduct possesses a fac-trioxo arrangement about osmium in which the nitrogen atom of $CH₃CN$ is coordinated trans to an oxygen atom. Preference for the fac-trioxo arrangement has been well documented and is consistent with other d^o transition metal trioxo species such as the related Os(VIII) and Re(VII) species, $(\text{OsO}_3\text{F}_2)_{\infty}^2$, (OsO_3F_2) . Os(VIII) and Re(VII) species, $(OsO_3F_2)_{\infty}^2$, (OsO_3F_2) .
 $2XeOF_4$, 23 OsO_3F_3 , $\frac{3}{2}$, $[XeF_5][\mu$ -F($OsO_3F_2)_{2}]$, (OsO_3F_2) . $[HF][SbF₆]²⁴$ ReO₃F,²⁵ and ReO₃F(CH₃CN)₂ CH₃CN,⁸ and has been previously discussed.³

The crystal lattice consists of $fac-OsO₃F₂(NCCH₃)$ and $CH₃CN$ molecules stacked along the b- and c-axes which alternate along the *a*-axis (Supporting Information, Figure S1). In the a,b-plane, the adduct molecule reverses orientation between successive layers, with the free $CH₃CN$ molecules alternating their orientations in a similar manner. The resulting intermolecular contacts are long and are near the sums of the van der Waals radii of the contacting atoms.^{26,27}

The C-N $(1.140(5)$ Å) and C-C $(1.437(5)$ Å) bond lengths of the adducted $CH₃CN$ molecule are comparable to those of the co-crystallized $CH₃CN$ solvent molecules $(1.140(4)$ and $1.450(4)$ Å, respectively) and both bond lengths are similar to those of ReO_3F - $(NCCH₃)₂$ (C-C 1.451(7), C-N 1.136(7) A).⁸ The C-N triple bond length is in good agreement with the previously

- (25) Supel, J.; Marx, R.; Seppelt, K. Z. Anorg. Allg. Chem. 2005, 631, 2979–2986.
	-
- (26) Bondi, A. J. Phys. Chem. **1964**, 68, 441–451.
(27) The long contacts in fac -OsO₃F₂(NCCH₃) are as follows: F(2) $\cdot \cdot \cdot$ $O(2A)$ (2.988(3) A^T), F(1) $\cdot \cdot$ H(5B) (2.469 A^T) to F(2) $\cdot \cdot$ H(3C) (2.740 A^T), $O(1)\cdots O(3D)$ (2.897(3) A^{*}), $O(3)\cdots H(9D)$ (2.557 A^{*}) to $O(3)\cdots H(1E)$ (2.861 Å) , $O(3) \cdots C(2E) (3.094(4) \text{ Å})$, $N(3) \cdots H(1F) (2.601 \text{ Å})$, $N(3) \cdots C(1F)$ $(3.206(5)$ Å) to N(3) \cdots C(2G) (3.434(5) Å), and C(1) \cdots C(5F) (3.471(5) Å). The corresponding sums of the van der Waals radii (taken from ref 26) are as follows: $[F\cdots F(2.94 \text{ Å}), F\cdots Q(2.99 \text{ Å}), F\cdots N(3.02 \text{ Å}), F\cdots H(2.67 \text{ Å}),$ $F\cdots C(3.17 \text{ Å})$, O \cdots O (3.04 Å), O \cdots N (3.07 Å), O \cdots H (2.72 Å), O \cdots C (3.22 Å) , N \cdots N (3.10 Å) , N \cdots H (2.75 Å) , N \cdots C (3.25 Å) , H \cdots H (2.40 Å) , $H \cdots C$ (2.90 Å) and $C \cdots C$ (3.40 Å)].

⁽²²⁾ Bougon, R.; Buu, B.; Seppelt, K. Chem. Ber. 1993, 126, 1331–1336. (23) Hughes, M. J.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2009, 48, 4478–4490.

⁽²⁴⁾ Gerken, M.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2002, 41, 259–277.

Table 2. Experimental Geometrical Parameters for fac-OsO₃F₂(NCCH₃) 2CH₃CN and Calculated Geometrical Parameters for fac-OsO₃F₂(NCCH₃), mer-OsO₃F₂ $(NCCH₃)$, and $CH₃CN$

$exptl^a$ calcd								
fac -OsO ₃ F ₂ (NCCH ₃) · 2CH ₃ CN			$fac-OsO3F2(NCCH3) (C1)$		$mer-OSO_3F_2(NCCH_3)(C_1)$		$CH_3CN(C_{3v})$	
			SVWN^b	B3LYP ^c	SVMN^b	B3LYP ^c	$S V W N^b$	B3LYP ^d
				Bond Lengths (Å)				
$Os-O(1)$	1.704(2)	$Os-O1$ $Os-O2$	1.727 1.727	1.701 1.701	1.760 1.728	1.736 1.705		
$Os-O(2)$	1.696(2)	$Os-O3$	1.712	1.687	1.760	1.736		
$Os-F(1)$	1.940(1)	$Os-F_1$	1.922	1.922	1.863	1.857		
		$Os-F_2$	1.922	1.922	1.968	1.972		
$Os--N(1)$	2.206(3)	$Os--N$	2.260	2.386	2.114	2.175		
$N(1)-C(1)$	1.140(5)	$N-C_1$	1.169	1.142	1.167	1.140	1.181	1.149
$C(1)-C(2)$	1.437(5)	C_1-C_2	1.443	1.449	1.440	1.447	1.451	1.455
$C(2)-H$	0.980	C_2-H	1.108	1.089	1.108	1.089	1.108	1.089
$N(2) - C(3)$	1.140(4)							
$C(3)-C(4)$	1.456(4)							
$C(4)-H$								
	0.94(4)							
				Bond Angles (deg)				
$O(1) - Os - O(1A)$	101.5(1)	$O_1 - O_5 - O_2$	100.9	100.7	101.5	101.4		
$O(1) - Os - O(2)$	102.60(8)	$O_1 - Os - O_3$	103.4	103.5	101.5	100.4		
$O(1) - Os - F(1)$	87.79(8)	O_1-Os-F_1	87.6	87.3	88.5	90.5		
$O(1) - Os - F(1A)$	159.89(8)	O_1 – Os – F_2	156.1	155.6	79.3	79.5		
$O(1)$ – Os --- $N(1)$	84.08(7)	$O_1 - Os - N_1$	82.9	82.0	91.0	88.9		
$O(1A) - Os - O(2)$	102.60(8)	$O_2-O_8-O_3$	103.4	103.5	156.9	158.7		
$O(1A) - Os - F(1)$	159.89(8)	O_2-Os-F_1	156.1	155.6	88.5	90.5		
$O(1A)-Os-F(1A)$	87.79(8)	O_2-Os-F_2	87.6	87.3	79.3	79.5		
$O(1A) - Os---N(1)$	84.08(7)	$O_2-Os--N_1$	82.9	82.0	91.0	88.9		
$O(2)-Os-F(1)$		$O_3-O_8-F_1$	96.2	96.8	100.1	100.0		
	92.52(8)							
$O(2) - Os - F(1A)$	92.52(8)	$O_3-O_8-F_2$	96.2	96.8	155.8	158.4		
$O(2)$ – Os --- $N(1)$	169.2(1)	$O_3-O_5---N_1$	169.9	171.2	82.4	83.1		
$F(1) - Os - F(1A)$	78.27(9)	F_1 –Os– F_2	76.7	76.9	104.1	101.5		
$F(1)$ –Os---N(1)	79.16(7)	F_1 –Os---N ₁	75.9	76.3	177.5	176.9		
$F(1A) - Os---N(1)$	79.16(7)	F_2 –Os--- N_1	75.9	76.3	73.4	75.4		
$Os--N(1)-C(1)$	178.7(2)	$Os---N_1-C_1$	170.5	173.7	173.6	174.3		
$N(1)-C(1)-C(2)$	178.6(3)	$N_1 - C_1 - C_2$	179.3	179.7	179.1	179.5		
$C(1) - C(2) - H$	109.5	C_1-C_2-H	110.0	110.3	110.0	109.3		
$H-C(2)-H$	109.5	$H-C_2-H$	108.5	109.0	108.5	109.4		
$N(2)-C(3)-C(4)$	178.6(3)						180	180
$C(3)-C(4)-H(4A)$	111(3)						110.8	110.2
$C(3)-C(4)-H(4B)$	109(2)						108.1	108.8
$C(3)-C(4)-H(4C)$	109(2)							
$H(4A) - C(4) - H(4B)$	109(3)							
$H(4A) - C(4) - H(4C)$	115(3)							
$H(4B) - C(4) - H(4C)$	104(3)							

^a For the atom labeling scheme, see Figure 1a. $\frac{b}{b}$ The SDDall basis set, augmented for F and O with two d-type polarization functions by Huzinaga, was used. 5 $6 \degree$ The Stuttgart basis set for Os augmented with one f-type polarization functional was used;⁵⁷ The aug-cc-pVTZ basis sets were used for all other atoms. $\frac{d}{dt}$ The aug-cc-pVTZ basis set was used.

calculated additive covalent radii for C (0.60 Å) and N (0.54 Å) .²⁸

The Os---N bond length $(2.206(3)$ Å) is shorter than the metal-nitrogen bond lengths of the $d⁰$ rhenium and tungsten adducts, $\text{ReO}_3\text{F}(\text{NCCH}_3)_2$ ^o CH₃CN (2.294(4) $\rm \AA)^8$ WF₆(NC₅H₄F) (2.294(9) $\rm \AA)^{59}$ WOF₄(NC₅H₄F) $(2.39(1)$ A $)$,²⁹ and WOF₄(NC₅H₅) (2.246(8) A $)$.³⁰ The nitrogen atom is trans to an oxygen atom which is consistent with the latter adducts and fluorine-bridged oxide fluoride compounds where the weakly bonded bridging
fluoring atom is trans to an exygen atom: e.g. $(Q_0 Q_0 E)$ 22 fluorine atom is trans to an oxygen atom; e.g., $(\text{OsO}_3\text{F}_2)_\infty$,

(30) Arnaudet, L.; Bougon, R.; Ban, B.; Charpin, P.; Isabey, J.; Lance, M.; Nierlich, M.; Vigner, J. Inorg. Chem. 1989, 28, 257–262.

 $(\text{OsO}_3\text{F}_2)_2 \cdot 2\text{XeOF}_4^2 \mu - \text{F}(\text{OsO}_3\text{F}_2)_2 - \frac{4}{5} \text{F}(\text{cis-OsO}_2\text{F}_3)_2 + \frac{31}{5}$ polymeric $MO_2F_3 \cdot SbF_5$ $(M = Re, Te),^{32}$ $F(TcOF_4)_2^{33}$ $F(ReOF_4)_2^+$,³⁴ $F(cis-ReO_2F_3)_2^+$,⁸ $Re_3O_6F_{10}^-$, $9 (WOF_4)_4$, 35 and $(MoOF₄)_∞$ ³⁶ The *trans*-influence of oxygen results in bonding of the nitrogen and fluorine atoms trans to oxygen atoms because the CH₃CN and fluorine σ -donor ligands do not compete as effectively as the π -donor oxygen ligands for the osmium $d_{t_{2g}}$ orbitals.⁹

⁽²⁸⁾ Pyykkö, P.; Riedel, S.; Patzschke, M. Chem.-Eur. J. 2005, 11, 3511-3520.

⁽²⁹⁾ Arnaudet, L.; Bougon, R.; Buu, B.; Lance, M.; Nierlich, M.; Vigner, J. Inorg. Chem. 1993, 32, 1142–1146.

⁽³¹⁾ Casteel, W. J.; Dixon, D. A.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 1996, 35, 4310–4322.

⁽³²⁾ LeBlond, N.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2000, 39, 2473–2487.

⁽³³⁾ LeBlond, N.; Mercier, H. P. A.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2000, 39, 4494–4509.

⁽³⁴⁾ Schrobilgen, G. J.; Holloway, J. H.; Russell, D. R. J. Chem. Soc., Dalton Trans. 1984, 1411–1415.

⁽³⁵⁾ Edwards, A. J.; Jones, G. R. J. Chem. Soc. A. 1968, 2074–2078.

⁽³⁶⁾ Edwards, A. J.; Steventon, B. R. J. Chem. Soc. A. 1968, 2503–2510.

Figure 1. (a) Structural unit in the X-ray crystal structure of fac - $OsO₃F₂(NCCH₃) \cdot 2CH₃CN$ with thermal ellipsoids drawn at the 70% probability level. (b) The octahedron formed by the light atoms of the $OsO₃F₂N-unit.$

All Os-O bonds are *cis* to one another, and the bond lengths are equal to within $\pm 3\sigma$ (1.704(2) and 1.696(2) A) and are in the same range as those of other neutral factrioxo osmium(VIII) compounds such as $(OsO₃F₂)_{\infty}$ $(1.688(1), 1.678(1), \text{ and } 1.727(1) \text{ Å})$,²² and $(OsO_3F_2)_2$ \cdot $2XeOF_4 (1.703(6), 1.685(6), \text{ and } 1.685(6) \text{ Å})$.²³ Although the Os-N bond is longer than the Os-F bonds (vide infra), the $Os-O(2)$ bond does not show significant shortening, indicating that, like fluorine, $CH₃CN$ does not compete as effectively with oxygen as a donor to osmium(VIII). The Os-F(1,1A) bonds (1.940(1) \dot{A}) are longer than the terminal Os-F bond in $(OsO₃F₂)_{\infty}$ $(1.879(1)$ Å),²² but are similar to those of the OsO₃F₃⁻² anion $(1.97(1)-1.91(1)$ Å),³ suggesting that the adducted CH3CN molecule donates sufficient electron density to the osmium atom to significantly weaken the Os-F bonds (see Computational Results).

The ligand atoms of $fac\text{-}OsO_3F_2(NCCH_3)$ form a distorted octahedral coordination sphere around osmium. Although there is significant variation in the bond lengths around the osmium atom, the octahedron formed by the light atoms is relatively undistorted (Figure 1b), as shown by the range of nearest neighbor-ligand atom contacts.³⁷ The $F(1)$, $F(1A)$, $O(1)$, and $O(1A)$ [$F(1)$, $N(1)$, $O(1A)$, and $O(2)$ {F(1A), N(1), O(1), and O(2)} atoms are coplanar

Figure 2. Raman spectrum of fac -OsO₃F₂(NCCH₃) recorded at -150° C using 1064-nm excitation: the symbols denote FFP sample tube lines (*) a using 1064-nm excitation; the symbols denote FEP sample tube lines (*), a band that overlaps with an FEP sample tube line $(\frac{4}{3})$, and an instrumental artifact (†).

to within ± 0.001 [0.03] {0.03} Å, and the osmium atom lies 0.255 [0.256] $\{0.159\}$ Å out of this plane, toward O(2) $[O(1)]$ $\{O(1A)\}\$. All three planes are orthogonal to one another to within $\pm 0.3^{\circ}$. The Os-O(2) and Os---N(1) bonds bend away from the $Os-O(1,1A)$ bonds toward the Os-F(1,1A) bonds at an angle of $169.2(1)$ ^o. The displacement of the osmium atom toward the fac -OsO₃ group is similar to the metal atom displacements observed in $(OsO_3F_2)_{\infty}^2$ $(OsO_3F_2)_2$ $2XeOF_4$, $23ReCl_3O_3^{2-38}$ $\text{OsO}_3\text{F}_3^{-3,4}$ and μ -F(OsO_3F_2)₂⁴⁴ and to those in the cisdioxo-metal oxide fluoride species cis -OsO₂F₄,³⁹ F(cis - $O\{O_2F_3\}^{\frac{1}{2}}$, $\frac{31}{2}$ $O\{O_2F_3^{+}}$, $\frac{40}{2}$ cis-Re $O_2F_4^{-}$, $\frac{8}{2}$ and $\frac{1}{c}$ is-TcO₂F₄⁻, $\frac{9}{2}$ where the central metal atom is symmetrically displaced along the line bisecting the O-M-O angle toward the oxygen ligands of the cis - $MO₂$ group.

Raman Spectroscopy. The low-temperature Raman spectrum of fac -OsO₃F₂(NCCH₃) (Figure 2) is very similar to that of $fac-OsO₃F₂(NCCH₃) \cdot nCH₃CN$, where $n \ge 2$ (Supporting Information, Figure S2), with the exception of the vibrational bands of uncoordinated CH3CN. With few exceptions, the bands in both spectra are split into two components. The Raman spectrum of fac -OsO₃F₂(NCCH₃) isolated from SO_2CIF showed a small amount of free CH3CN as an impurity (Supporting Information, Table S1). The assigned Raman spectrum is that of the unsolvated product, $fac\text{-}OsO_3F_2(NCCH_3)$, whereas the crystal structure is that of the solvated product, $fac\text{-}OsO_3F_2(NCCH_3)$. $2CH₃CN$. Consequently, a factor-group analysis could not be carried out to unambiguously confirm that the additional splittings in the Raman spectra of fac -OsO₃F₂(NCCH₃) and $fac\text{-}OsO₃F₂(NCCH₃) \cdot nCH₃CN$ arise from vibrational coupling within the unit cell. The factor-group analysis for $fac\text{-}OsO₃F₂(NCCH₃) \cdot 2CH₃CN$ (Supporting Information,

⁽³⁷⁾ The interatomic distances for the light atoms that comprise the coordination spheres of the Os atoms in fac -OsO₃F₂(NCCH₃) are as follows: $O(1) \cdots O(2,3)$ 2.638(3), 2.655(3) Å; $O(1) \cdots F(1)$ 2.538(3) Å; $O(1) \cdots N(1)$ 2.647(4) Å; O(2) \cdots O(3) 2.658(3); O(2) \cdots F(2) 2.534(3) Å; O(2) \cdots N(1) 2.646(4) Å; $O(3) \cdot \cdot \cdot F(1,2)$ 2.633(3), 2.636(3); and N(1) $\cdot \cdot \cdot F(1,2)$ 2.645(3), $2.647(3)$ A.

⁽³⁸⁾ Lis, T. *Acta Crystallogr., Sect. C* **1983**, 39, 961–962.
(39) Christe, K. O.; Dixon, D. A.; Mack, H. G.; Oberhammer, H.; Pagelot, A.; Sanders, J. C. P.; Schrobilgen, G. J. J. Am. Chem. Soc. 1993, 115, 11279–11284.

⁽⁴⁰⁾ Hughes, M. J.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 271–284.

Table 3. Calculated and Experimental Raman Frequencies, Intensities, and Assignments for fac -OsO₃F₂(NCCH₃)

"The Raman spectrum was recorded on a microcrystalline solid in a FEP sample tube at -150 °C using 1064-nm excitation. Raman intensities are given in parentheses and are relative intensities with the most intense band given as 100. The abbreviation (sh) denotes a shoulder. ^b SVWN/SDDall. Values in parentheses denote calculated Raman intensities ($\AA^4 u^{-1}$) and values in square brackets denote calculated infrared intensities (km mol⁻¹) ^c Values in parentheses denote calculated Raman intensities (A⁴ u^{–1}) and values in square brackets denote calculated infrared intensities (km mol^{–1}).
^d B3LYP/Stutt-f (Os) aug-cc-pVTZ (H, C, N, F). ^c B3LYP/auglabeling scheme refers to Figure 4a for fac -OsO₃F₂(NCCH₃), and the plane of symmetry is defined by the O₂, O₃, O₃, O₃, F₁, and N atoms. The abbreviations denote stretch (*v*), bend (δ), torsion (ρ _t), wag (ρ _w), rock (ρ _r), out-of-plane (oop), and in-plane (ip). ^{*s*} Overtone band corresponding to 2 × 1356 cm⁻¹.
^h Combination band corresponding to 1356

Table S2), however, predicts that the vibrational bands are split into two components, suggesting that the unit cells of $fac\text{-}OsO₃F₂(NCCH₃), fac\text{-}OsO₃F₂(NCCH₃) \cdot nCH₃CN, and$ fac -OsO₃F₂(NCCH₃) \cdot 2CH₃CN are closely related, or identical for the solvated adducts, i.e., $n = 2$.

The observed and calculated frequencies of $fac\text{-}OsO₃F₂(NCCH₃)$ at both the SVWN and B3LYP levels of theory and their assignments are listed in Table 3. The spectral assignments were made by comparison with the calculated frequencies and Raman intensities (Table 3) of the energy-minimized geometries of $fac\text{-}OsO₃F₂(NCCH₃)$ and CH3CN (see Computational Results). The calculated vibrational frequencies obtained at the SVWN and B3LYP levels are in good agreement. The mode descriptions are based on the atomic displacements obtained for the optimized B3LYP geometry.

The bands at 924, 934 and at 942, 945 cm⁻¹ are assigned to the out-of-phase $v(SSO_1) - v(SO_2)$ and the in-phase $\nu(\text{OsO}_1) + \nu(\text{OsO}_2)$ stretching modes. The modes are

shifted to lower frequency when compared with the corresponding modes in $(OsO₃F₂)_{\infty}$ (945, 949, 952, 957 cm^{-1} ,²³ in accordance with donation of electron density from the nitrogen atom to the osmium atom which weakens the $Os-O$ bonds. The $Os-O$ stretching modes occur to higher frequency than those of $OsO₃F₃⁻$ (908, 912, 920 cm⁻¹),³ consistent with the lower base strength of $CH₃CN$ relative to that of the fluoride ion. On the basis of the vibrational displacements obtained at the B3LYP level, the relatively strong bands at 910 and 918 cm^{-1} are assigned to the $\nu(\text{OsO}_3)$ stretching mode; however, at the SVWN level, the $\nu(\text{OsO}_3)$ stretch weakly couples in an in-phase manner with $\nu(C_1C_2)$ of the CH₃CN ligand bonded trans to O₃. The in-phase $\nu(\text{OsF}_1) + \nu(\text{OsF}_2)$ (598 cm^{-1}) stretching mode occurs to higher frequency than its out-of-phase counterpart, $\nu(\text{OsF}_1) - \nu(\text{OsF}_2)$ (529 cm^{-1}) , in agreement with the calculated values $(609 \text{ and } 547 \text{ [B3LYP] cm}^{-1},$ respectively). The in-phase stretch is very similar to the in-phase stretch of $(OsO₃F₂)_{\infty}$

Table 4. NMR Chemical Shifts and Spin–Spin Coupling Constants for fac -OsO₃F₂(^{14/15}NCCH₃) and *mer*-OsO₃F₂(^{14/15}NCCH₃)

species	solvent $T({}^{\circ}C)$		chemical shifts, ppm			coupling constants, Hz				
			$\delta({}^{19}\text{F})^a$	$\delta(^{15}N)$	$\delta({}^{13}C)^b$		$\delta({}^{1}\text{H})$ ${}^{2}J({}^{19}\text{F}_{1} - {}^{19}\text{F}_{2})$ a ${}^{1}J({}^{15}\text{N} - {}^{19}\text{F}_{1})$ a ${}^{1}J({}^{13}\text{C} - {}^{1}\text{H})$ ${}^{1}J({}^{19}\text{F} - {}^{187}\text{Os})$ ^c			
fac -OsO ₃ F ₂ (¹⁴ NCCH ₃)	CH ₃ CN	-40	-99.6^{d}			2.55^{e}			126.1	
$fac-OsO3F2(14NCCH3)$	SO_2ClF'	-40	-93.6			2.66			137.9	
$fac-OsO3F2(14NCCH3)$	SO ₂ ClF'	-80	-96.1			1.76			139.5	41.2
fac -OsO ₃ F ₂ (¹⁵ NCCH ₃) ^g	SO_2ClF'	-84	-96.8		-197.3 2.24 (CH ₃)	2.02		21.4	139.8	
$mer-OsO3F2(14NCCH3)$	SO_2ClF'	-40	$-44.4 F2$ $-13.1 F_1$			3.12	134.3		142.8	
$mer-OsO3F2(14NCCH3)$	SO ₂ ClF'	-80	$-46.1 F2$ $-15.4 F_1$			2.71	135.0		145.3	
mer-OsO ₃ F ₂ (¹⁵ NCCH ₃) ⁸ SO ₂ ClF ^f		-84	$-17.9 F_1$		$-48.0 F_2$ -258.6 3.15 (CH ₃) 3.04		134.3	18.3	140.4	

^aThe equatorial and axial fluorine atoms are denoted by F₁ and F₂, respectively. ^bThe ¹³C resonances of fac-OsO₃F₂(¹⁴NCCH₃) and mer-OsO₃F₂(¹⁴NCCH₃) could not be observed. ^cThe ¹J(¹⁹F-¹⁸⁷Os) coupling constant could only be observed for fac-OsO₃F₂(¹⁴NCCH₃) in SO₂ClF solvent $(-80^{\circ}\bar{C})$. Now weak doublet (46.9 ppm) and quintet (95.2 ppm) $(^{2}J(^{19}F^{-19}F) = 92$ Hz) resonances assigned to $O\bar{SO}_{2}F_{5}^{-}$ were observed in the ¹⁵F spectrum.

Acetonitrile solvent was observed in the ¹H spe impurity (parentheses), and weak unassigned resonances (braces) were observed in the ¹⁹F spectra $[-40 \text{ °C} \cdot 98.9 \cdot (32.7) \{-70.5, -72.0, -76.6\}$; $-80 \text{ °C} \cdot$ 98.5 (32.7) {-70.7, -72.2, -76.7}; -84 °C: 98.7 (32.7) {69.0, -72.1, -73.1, -76.6} ppm]. Resonances assigned to HF impurity (a doublet) and free
CH₃CN (parentheses) were observed in the ¹H spectra [-40 °C: 6.16 ppm, observed in the ¹³C{¹H} (117.50 [CN] and 0.86 [CH₃] ppm) and ¹⁵N (-138.3 ppm) spectra.

 $(596 \text{ cm}^{-1})^{23}$ and is shifted to higher frequency than in OsO_3F_3 ⁻ (573 cm⁻¹),³ consistent with a neutral species. The out-of-phase stretching mode is intermediate within the span of asymmetric Os-F stretching modes observed for $\left(\text{OsO}_3\text{F}_2\right)_{\infty}$ (610 cm⁻¹)²³ and $\text{OsO}_3\text{F}_3^{\text{--}}$ (504 cm⁻¹).³ Its intermediacy is consistent with that observed for the Os-O stretching modes (vide supra). The Os---N stretching band at 204 cm^{-1} is weak and intermediate with respect to the M---N stretching frequencies of other CH₃CN adducts such as TcO₂F₃(NCCH₃) (217 cm⁻¹),⁹ $[ReO_2F_2(CH_3CN)_2][S_2^bF_6]$ (264 cm⁻¹),³² and ReO₂F₃- $(NCCH_3)$ (252 cm⁻¹).⁸

The ν (CN) stretching band of the coordinated CH₃CN molecule (2332 cm^{-1}) occurs at significantly higher frequency than that of free CH_3CN (2248 cm⁻¹). The highfrequency shift is consistent with donation of electron density by the nitrogen ligand atom to osmium, which strengthens the C-N bond as a result of nitrogen rehybridization to give more s character to the CN σ-bond.⁴¹ Thus, backbonding from Os(VIII) into the $π^*$ orbitals of the CN group is not important because it would lead to a decrease in $\Delta \nu$ (CN). The calculated complexation shifts at the SVWN ($\Delta \nu$ (CN), 75 cm⁻¹) and $\overline{B3LYP}$ ($\Delta \nu(CN)$, 59 cm⁻¹) levels are in good agreement with the experimental complexation shift $(\Delta \nu(CN))$, 84 cm⁻¹). The bands at 952 and 956 cm⁻¹ are assigned to ν (CC) of coordinated CH₃CN at the B3LYP level, which weakly in-phase and out-of-phase couple with $v(\text{OsO}_3)$ at the SVWN level (vide supra). The ν (CC) band shifts to higher frequency at the SVWN and B3LYP levels upon coordination (exptl., $\Delta \nu (CC)$, 34 cm⁻¹; calcd., $\Delta \nu (CC)$, 40 and 19 cm^{-1}, respectively), indicating a strengthened C-C bond. The experimental complexation shifts for $\nu(CN)$ and $\nu(CC)$, and their trends are similar to those of $TcO_2F_3(NCCH_3)(\Delta\nu(CN), 49; \Delta\nu(CC), 18 cm^{-1})^9$ and $\text{ReO}_2\text{F}_3(\text{NCCH}_3)$ ($\Delta \nu(\text{CN})$, 75; $\Delta \nu(\text{CC})$, 22 cm⁻¹),⁸ suggesting similar Lewis acid strengths for monomeric $OsO₃F₂$, TcO₂F₃, and ReO₂F₃. The C-H bonds are little affected by coordination to osmium, with the experimental and calculated CH₃ group frequencies showing no significant complexation shifts.

There are four modes associated with the in-plane and out-of-plane $\delta(NCC)$ bending modes (relative to the [O2, O3, Os, F1, N]-plane). The $\delta (NCC)_{ip}$ bend is observed at 415 cm^{-1} , while the $\delta (\text{NCC})_{\text{oop}}$ bend is predicted to occur at higher frequency, but could not be observed. The remaining out-of-plane and in-plane bending modes are both weakly coupled to $O-Os-O$ and $F-Os-F$ bends to give bands at 277 and 326 cm^{-1} , respectively. The in-plane (232 cm⁻¹) and out-of-plane (216 cm⁻¹) δ (Os---NC) bending modes are to higher frequency than the Re---NC bending modes in $ReO₂F₃(NCCH₃)$ (174 and 154 cm^{-1}).⁸

NMR Spectroscopy. Table 4 lists the ${}^{1}H, {}^{13}C, {}^{15}N,$ and ¹⁹F NMR parameters for $fac\text{-}OsO_3F_2(^{14}\text{NCCH}_3)$ in CH₃CN solvent (-40 °C), fac- and mer-OsO₃F₂(¹⁴NCCH₃) in SO₂ClF solvent (-40 and -80 °C) and fac- and mer- $OsO₃F₂(¹⁵NCCH₃)$ in SO₂ClF solvent (-84 °C).

(a) $fac-OSO_3F_2(NCCH_3)$. The ¹⁹F NMR spectrum of fac -OsO₃F₂(¹⁴NCCH₃) in CH₃CN solvent at -40 °C consists of a singlet at -99.6 ppm, which is less shielded than the ¹⁹F environment of $\overline{OsO_3F_3}^-$ in CH₃CN solvent $(-116.8 \text{ ppm})^3$ and considerably more shielded than both ¹⁹F environments of *cis*-OsO₂F₄ (15.8 and 63.3 ppm) in anhydrous HF solvent.³⁹ This is consistent with a decrease in the number of strongly electron withdrawing fluorine ligands and the addition of the electron donating nitrogen and oxygen ligands. The 19F chemical shift is intermediate with respect to those of $WOF_4(NCCH_3)$ $(-68.5 \text{ ppm})^{10}$ and $\text{MoOF}_4(\text{NCCH}_3)$ $(-147.4 \text{ ppm})^7$ recorded at -30 °C in CH₃CN. The ¹H NMR spectrum at -40 °C is a singlet corresponding to complexed CH₃CN at 2.55 ppm $({}^{1}J({}^{1}H-{}^{13}\dot{C}) = 126.1$ Hz) which is shifted to higher frequency than the ¹H resonance of CH₃CN solvent (2.06 ppm, $^{1}J(^{1}H-^{13}C) = 136.1$ Hz), consistent with Lewis acid-base adduct formation. The complexation shift (0.49 ppm) is comparable to that of $TcO₂F₃(NCCH₃)$ in CH₃CN solvent (0.37 ppm).⁹

The ¹⁹F NMR spectrum of $fac\text{-}OsO₃F₂(^{14}NCCH₃)$ in SO₂ClF solvent at -80 (-40) °C is a singlet at -97.6

⁽⁴¹⁾ Purcell, K. F.; Drago, R. S. J. Am. Chem. Soc. 1966, 88, 919–924.

Figure 3. ¹⁹F NMR spectra (470.409 MHz) of ¹⁵N-enriched *fac*- $OsO₃F₂(NCCH₃)$ (A) and mer-Os $O₃F₂(NCCH₃)$ (B) in SO₂ClF solvent at $-80 °C$.

 (-93.6) ppm with ¹⁸⁷Os ($I = \frac{1}{2}$; natural abundance, 1.64%) satellites corresponding to $^{1}J(^{187}Os-^{19}F) = 41.2$ Hz. The $^{187}Os^{-19}F$ coupling constant is greater than that observed for the $OsO₃F₃⁻$ anion (32 Hz),³ and is consistent with greater Os-F bond covalency in the neutral adduct, and is similar to one of the two $^{1}J(^{187}Os-^{19}F)$ couplings observed for cis -OsO₂F₄ (35.1 and 59.4 Hz).³⁹ In the latter case, the smaller coupling constant was tentatively assigned to ${}^{1}J({}^{187}Os-{}^{19}F_a)$ where the fluorine ligands are trans to one another, and the larger coupling was assigned to ${}^{1}J({}^{187}Os-{}^{19}F_{e})$, where the fluorine ligands are trans to oxygen ligands. The F atoms are trans to O atoms for both $OsO₃F₃⁻$ and $OsO₃F₂(NCCH₃),$ suggesting that the ${}^{1}J({}^{187}Os-{}^{19}F)$ coupling and ${}^{19}F$ chemical shift assignments for cis -OsO₂F₄ should be interchanged.⁴² Smaller $^1J(M-^{19}F)$ coupling constants for fluorine trans to oxygen relative to those for fluorine trans to fluoring have also been reported for $WO_2F_4^{2-43}$ and $TeO_2F_4^{-9}$ A ¹⁵N-enriched sample of $fac-OSO_3F_2$ - $($ ¹⁵NCCH₃) in SO₂ClF solvent resulted in splitting of the $\hat{f}ac\text{-}OSO_3F_2(^{15}NCCH_3)$ ¹⁹F resonance at -96.8 ppm into a doublet $(2J(^{19}F-^{15}N), 21.4$ Hz, Figure 3), confirming that a single $CH₃CN$ molecule is coordinated to osmium and that both fluorine ligands are chemically equivalent.

The ¹⁵N NMR resonance of fac -OsO₃F₂(¹⁵NCCH₃) (Figure 4) at -197.3 ppm is a triplet $({}^2J({}^{15}\text{N}-{}^{19}\text{F}) = 21.4$ Hz) which is consistent with splitting of the ¹⁵N resonance by coupling to two chemically equivalent fluorine nuclei. The ¹⁵N resonance of the complexed $CH_3C^{15}N$ ligand is shifted by 59.0 ppm to lower frequency when compared with that of free $CH_3C^{15}N$ (-138.3 ppm) in SO₂ClF solvent.

Figure 4. ¹⁵N NMR spectra (50.693 MHz) of ¹⁵N-enriched fac -OsO₃F₂- $(NCCH₃)(A)$, mer-OsO₃F₂(NCCH₃)(B), and free CH₃CN(C) in SO₂ClF solvent at -80 °C.

Figure 5. ¹H NMR spectra (500.138 MHz) of ¹⁵N-enriched *fac*-OsO₃F₂-
(NCCH-) (A) mer-OsO-F-(NCCH-) (R) and free CH-CN (C) in SO-ClF $(NCCH₃)(A)$, mer-OsO₃F₂(NCCH₃)(B), and free CH₃CN(C) in SO₂ClF solvent at -80 °C.

The ¹H NMR spectra of $fac\text{-}Os\text{O}_3\text{F}_2(^{14}\text{NCCH}_3)$ and $fac\text{-}OsO_3F_2(^{15}\text{N}\text{C}\text{C}\text{H}_3)$ (Figure 5) recorded in SO₂ClF solvent at -80 (-40) °C are singlets at 1.76 (2.66) ppm $({}^{1}J({}^{1}H-{}^{13}C), 139.5 (137.9)$ Hz) and 2.02 ppm $({}^{1}J({}^{1}H-{}^{13}C),$ 139.8 Hz), respectively. The ¹H complexation shifts for the ^{14}N (0.50 ppm) and ^{15}N (0.51 ppm) isotopomers are comparable to that observed for $\text{ReO}_2F_3(NCCH_3)$ in SO_2CIF (0.59 ppm).⁸ A singlet was observed at 2.24 ppm in the ¹³C{¹H} NMR spectrum of fac -OsO₃F₂(¹⁵NCCH₃) $(-80 \degree C)$ which resulted from the methyl carbon of the coordinated $CH₃CN$ ligand, representing a 1.59 ppm complexation shift relative to free CH_3CN (0.65 ppm), also observed in the same sample. The 13 C resonances of complexed $CH₃CN$ could not be observed in $CH₃CN$ solvent presumably because they overlap with the solvent peaks.

(b) mer-OsO₃F₂(NCCH₃). The ¹⁹F NMR spectra of mer-OsO₃F₂(¹⁴NCCH₃) at -40 [-80] °C in SO₂ClF solvent consisted of two weak doublets assigned to the equatorial $(-13.1$ [-15.4] ppm) and axial $(-44.4$ [-46.1]

⁽⁴²⁾ The low-frequency ¹⁹F resonance of *cis*-OsO₂F₄ (15.8 ppm; ¹J(¹⁸⁷Os⁻¹⁹F), 35.1 Hz) should be reassigned to the two equatorial fluorine ligands trans to oxygen, and the high-frequency 19 F resonance (63.3 ppm $J(^{187}Os-^{19}F)$, 59.4 Hz) should be reassigned to the mutually trans axial fluorine ligands. The reassignment is now consistent with the range of $1J(^{187}Os-^{19}F)$ coupling constants for fluorine trans to oxygen in other Os(VIII) oxide fluorides, namely, cis -OsO₂F₄, fac -OsO₃F₂(NCCH₃), and fac -OsO₃F₃ -.

⁽⁴³⁾ Buslaev, Y. A.; Petrosyants, S. P. J. Struct. Chem. **1969**, 10, 983–985; Zh Strukt. Khim. 1969, 10, 1105-1107.

ppm) fluorine environments with ${}^{2}J(^{19}F_{1} - {}^{19}F_{2}) = 134.3$ [135.0] Hz, which is similar to the two-bond fluorinefluorine coupling constant of cis- OsO_2F_4 (138.3 Hz).³⁹ The ¹⁹F NMR spectrum of *mer*-OsO₃F₂(¹⁵NCCH₃), recorded at -84 °C, consisted of a weak doublet of doublets at -17.9 ppm assigned to F_1 and a weak doublet, of equal intensity, at -48.0 ppm assigned to F_2 with ${}^2J({}^{19}F_1-{}^{19}F_2) = 134.3$ Hz and ${}^2J({}^{15}N-{}^{19}F_1) = 18.3$ Hz (Figure 3). The ${}^{2}J(^{15}N-{}^{19}F_2)$ coupling was not resolved.

The $15N$ NMR spectrum of the $15N$ enriched mer- $O₃F₂(NCCH₃)$ (Figure 4) consisted of a doublet at -258.6 ppm which resulted from coupling to the equatorial fluorine $({}^2J({}^{15}N-{}^{19}F_1) = 18.3 \text{ Hz}})$; however, as in the ¹⁹F NMR spectrum, the ² $J(^{15}N-^{19}F_2)$ coupling to the axial fluorine was not resolved.

Two-bond coupling constants are known to have a bond angle dependence, with the coupling constant increasing with increasing bond angle so that a *trans-* $2J$ coupling is generally larger in magnitude than a *cis*-²J coupling is generally larger in magnitude than a *cis*-
²J coupling.⁴⁴ The ²J(¹⁵N-¹⁹F₁) coupling constant is therefore expected to be larger than ${}^{2}J(^{15}N-{}^{19}F_2)$. The only splitting observed on the resonance at -17.9 ppm has therefore been assigned to ${}^{2}J(^{15}N-{}^{19}F_1)$ assuming that the ²J(¹⁵N-¹⁹F₂) coupling on the resonance at -48.0 ppm is smaller and therefore could not be resolved.

The 1 H NMR spectrum recorded in SO₂ClF (Figure 5) is a singlet at 3.12 ppm $(-40 °C, {}^{1}J({}^{1}H-{}^{13}C) = 142.8 \text{ Hz})$ and at 3.04 ppm $\left(-80\right)$ °C, $^{1}J(\left[H-\right]^{13}C)$ = 140.4 Hz). The complexation shift (av., 1.53 ppm) is significantly greater than that observed for $fac\text{-}OsO_3F_2(NCCH_3)$ (av., 0.51) ppm), in accordance with the shorter calculated Os---N bond length (see Calculated Geometries). The ${}^{13}C_1{}^{1}H$ } NMR spectrum consists of a singlet at 2.39 ppm for the methyl carbon of the coordinated CH3CN ligand; however, $a¹³C$ signal could not be observed for the cyano carbon of the natural abundance sample at either temperature.

Reaction Pathways Leading to fac- and mer- OsO_3F_2 -(NCCH₃). In addition to fac -OsO₃F₂(NCCH₃) (Structure I), two other $OsO₃F₂(NCCH₃)$ isomers are possible in which the oxygen ligands have mer-arrangements. These meridional isomers are distinguished by coordination of $CH₃CN$ trans to a F atom ($mer-OsO₃F₂(NCCH₃)$, Structure II) and by coordination of CH_3CN trans to an O atom (*mer*^{\prime}-OsO₃F₂-(NCCH3), Structure III). Solution NMR studies and the solid-state Raman spectrum and a single-crystal X-ray structure reveal that only the *fac*-isomer is observed in the solid state and in $CH₃CN$ solution, whereas a mixture of fac - and *mer*-OsO₃ $F_2(NCCH_3)$ is observed in SO₂ClF solvent where the *fac*-isomer is strongly favored over the *mer*-isomer. No experimental evidence for the *mer'*-isomer was obtained. The ensuing discussion proposes likely pathways that lead to the *mer*- and fac -isomers and account for the absence of the mer' isomer.

In the solid state, $(OsO₃F₂)_{\infty}$ is a fluorine-bridged polymer in which the Os atoms are pseudo-octahedrally

coordinated, having a fac-trioxo arrangement and two bridging F atoms and one terminal F atom that are trans to O atoms (Structure IV). The Os--- $F_{1,3}$ bridge bonds can be regarded as half bonds relative to the terminal $Os-F₂$ bond of the $(\text{OsO}_3\text{F}_2)_{\infty}$ polymer. Thus, the fluorine bridge ligand is the only viable leaving group for displacement by CH_3CN^{23} When $(OsO_3F_2)_{\infty}$ is dissolved in CH₃CN, the direction of solvent attack must be along a pseudo 3-fold axis along which a $d_{t_{2g}}$ metal orbital points. The preferred face for attack will be the least sterically hindered face of the pseudo-octahedron which is composed of two bridging fluorine ligands and an oxygen ligand, and leads exclusively to the fac-isomer (Scheme 1a). Dissociation of fac -OsO₃F₂(NCCH₃) to the trigonal bipyramidal *cis*- $OsO₃F₂$ intermediate is suppressed in CH₃CN solvent so that isomerization to *mer*-OsO₃F₂(NCCH₃) is prevented (Scheme 1b). Isomerization occurs, however, when $O₃F₂(NCCH₃)$ is formed in $SO₂ClF$ solvent because the equilibrium leading to cis- OsO_3F_2 (C_s) is no longer suppressed, allowing CH₃CN to recombine by coordination in the trigonal plane of cis- $\cos\Theta_3F_2$ at (a) the sterically least congested sites between the equatorial fluorine ligand and an oxygen ligand to give fac -OsO₃F₂(NCCH₃) (Scheme 1c) or at (b) the sterically most congested and least favored site between two oxygen ligands to give mer- $OsO₃F₂(NCCH₃)$ (Scheme 1d). Thus, the pathway that leads to fac -OsO₃F₂(NCCH₃) in SO₂ClF is twice as likely as that which leads to mer- $\text{OsO}_3\text{F}_2(\text{NCCH}_3)$. The experimental isomer ratios are not statistical ($fac/mer = 2$), but are significantly skewed toward the fac-isomer because of steric and electronic effects which also favor the *fac*-isomer. In SO₂ClF solvent, a plausible path from $fac\text{-}OsO₃F₂(NCCH₃)$ and mer- $OsO₃F₂(NCCH₃)$ to mer'- $O₃F₂(NCCH₃)$ commences with dissociation of facor $mer-OsO₃F₂(NCCH₃)$ to $cis-OsO₃F₂(C_s)$ followed by intramolecular ligand exchange by means of Berry pseudorotation to give the *cis,trans*-OsO₃F₂ (C_{2v}) and $eq\text{-}OsO_3F_2(D_{3h})$ intermediates (Scheme 1e). Recombination by CH_3CN coordination to *cis, trans*-OsO₃F₂ in the trigonal plane between one of the F atoms and the O atom affords $mer-OsO₃F₂(NCCH₃)$ (Scheme 1f) whereas coordination between the two F atoms affords mer'- $O₃F₂(NCCH₃)$ (Scheme 1g), which is sterically more favorable, but statistically less favorable. The calculated relative stabilities of cis-OsO₃F₂ (C_s) and eq-OsO₃F₂ (D_{3h}) are similar with cis-OsO₃F₂ (C_s) being slightly more stable (5.7 kJ mol⁻¹) at the B3LYP level of theory and eq-OsO₃F₂ (D_{3h}) being slightly more stable (3.1 kJ mol⁻¹) at the SVWN level of theory. Attempts to optimize the structure of the *cis*, trans- OsO_3F_2 (C_{2v}) intermediate failed at both the SVWN and B3LYP levels of theory, yielding only eq -OsO ₃F₂ (D_{3h}) as the optimized structure. To ensure failure to optimize the *cis-*, trans- OsO_3F_2 (C_{2v}) intermediate was not basis set dependent, a further attempt was made at the B3LYP level using the augcc-pVTZ(-PP) basis set for Os. Once again the optimization only gave the $eq\text{-}OsO_3F_2(D_{3h})$ geometry. Thus, there is apparently no pathway that converts cis -OsO₃F₂ to *cis*, $trans\text{-}OsO₃F₂$ by means of Berry pseudorotation. Although the stabilities of cis-OsO₃F₂ and eq-OsO₃F₂ are very similar, the non-existence of the cis, trans- $OsO₃F₂$ intermediate renders isomerization pathways (44) Mason, J. Multinuclear NMR, 2nd ed.; Plenum Press: New York, 1987. f-h in Scheme 1 untenable. Alternative rearrangements

Scheme 1. Reaction Pathways That Account for the Formation of the Experimentally Observed fac- and mer-OsO₃F₂(NCCH₃) Isomers and the Absence of mer' -OsO₃F₂(NCCH₃)

by dissociative mechanisms would be predicated on the dissociation of the cis-OsO $_3F_2$ to OsO $_3F^+$ and F⁻, which; however, would present a formidable barrier, with gas-phase dissociation energies of 948 (SVWN) and 872 (B3LYP) kJ mol-¹ . Moreover, a dissociative mechanism would not be viable under the present basic solvent conditions because $OsO₃F⁺$ can only be generated by fluoride ion abstraction using strong Lewis acid fluoride ion acceptors.²⁴

The reaction pathways in Scheme 1 suggest that the most abundant isomer should be fac -OsO₃F₂- $(NCCH₃)$, consistent with the $CH₃CN$ solution NMR studies and isolation of this isomer from $CH₃CN$ solution. The weaker resonances in SO_2ClF solution have a splitting pattern and abundance consistent with $mer-OsO₃F₂(NCCH₃)$. The above considerations account for why the fac-isomer was always present in significantly higher concentration than the mer-isomer in SO₂ClF solution and why *mer'*-OsO₃F₂(NCCH₃) is not observed.

Computational Results

The calculated geometries of $fac-$ and mer-OsO₃F₂-(NCCH₃) (Figure 6) optimized under C_1 symmetry at the SVWN [B3LYP] levels of theory and resulted in stationary points with all frequencies real. The starting geometry for fac- $O₃F₂(NCCH₃)$ was the crystallographic geometry, and the starting geometry for *mer*-OsO₃ $F_2(NCCH_3)$ was obtained by interchanging the positions of one oxygen and one fluorine atom in the optimized geometry of $fac\text{-}OsO_3F_2(NCCH_3)$. The energy-minimized geometries (Table 2 and Supporting Information, Figure S3) and vibrational frequencies (Table 3) of CH₃CN (C_{3v}) and *cis*- OsO₂F₄ $(C_{2v})^{23}$ were also calculated to serve as benchmarks and for comparison with *fac*- and *mer*- $OsO₃F₂(NCCH₃)$.

(a) Calculated Geometries. (i) $fac\text{-}OsO₃F₂(NCCH₃)$. The calculated geometries of $fac\text{-}OsO₃F₂(NCCH₃)$ (Figure 6a) are in good agreement with the experimental geometry. Overall, the B3LYP values provide slightly

Figure 6. Calculated SVWN/SDDall gas-phase geometries for (a) fac- $O₃F₂(NCCH₃) (C₁), (b)$ mer- $O₃F₂(NCCH₃) (C₁).$

better agreement with the experimental bond lengths, although the Os---N bond length $(2.260 \; [2.386] \; A)$ is overestimated when compared with the experimental value $(2.205(3)$ Å). The Os-O bond lengths $(1.727,$ 1,712 $[1.701, 1.687]$ Å) are in good agreement with the experimental values $(1.707(2), 1.704(2), 1.699(2)$ Å); however, the calculations overestimate the bond length differences between bonds that are trans to F and those that are trans to O. The Os---F bond lengths $(1.922 \mid 1.922]$ A) are slightly underestimated when compared with the experimental values $(1.939(2)$ A). The experimental bond angles are all well reproduced by both methods, the largest discrepancy being the Os- $-N-C$ bond angle, which is calculated to be 170.5 [173.7]^o instead of the almost linear experimental value of $178.4(2)^\circ$. The deviation from linearity for the calculated structure is likely a result of the $CH₃CN$ ligand being repelled by the Os-O double bond domain toward the Os-F single bond domain. The near-linear $Os--N-C$ bond angle in the crystal structure is attributed to crystal packing because this angle is very deformable as suggested by the low calculated $Os--N-C$ bending frequencies $(214$ and 217 cm⁻¹). The N-C and C-C bond lengths of the adducted $CH₃CN$ molecule are slightly shorter than those predicted for the free $CH₃CN$ molecule, in agreement with experiment.

(ii) *mer*- $\text{OsO}_3\text{F}_2(\text{NCH}_3)$. The energy-minimized geometry of *mer*- $OsO₃F₂(NCCH₃)$ (Figure 6b) has a pseudooctahedral osmium coordination sphere in which the nitrogen atom of $CH₃CN$ is coordinated trans to a fluorine atom (Os-N, 2.114 [2.175] A). The O_2 and O_3 atoms are equidistant from the osmium atom (1.760 [1.736] A) with a somewhat shorter $Os-O₁$ bond length $(1.728 [1.705] \text{Å})$. The longer $\text{Os}-\text{O}_{2,3}$ bond lengths result from the mutual trans influences of the oxygen ligands, whereas the shorter $Os-O₁$ bond length results because O_1 is trans to a fluorine ligand, F_2 . The F_1 atom is trans to the CH₃CN ligand, resulting in a $Os-F_1$ bond length $(1.863 \; [1.857] \; \text{\AA})$ that is shorter than the Os-F₂ bond length (1.968 [1.972] Å). The longer $Os-F_2$ bond length results from the greater trans influence of $O₁$ when compared with that of the CH₃CN ligand. The N---Os-O₂₃ bond angles are equal (91.0 [88.9] $^{\circ}$) and more open than the N---Os-O₁ (84.2 [83.1]^o) and N---Os-F₂ (73.4 [75.4]^o) bond angles.

The N-C and C-C bond lengths of the adducted CH3CN molecule are slightly shorter than those calculated for the free $CH₃CN$ molecule, in accordance with the relatively short Os---N bond length $(2.114 \, [2.175] \, A)$, and are comparable to those of the fac-isomer (vide supra).

(b) Charges, Valencies, and Bond Orders. The NBO^{45-48} analyses were carried out for the SVWN- and B3LYPoptimized gas-phase geometries of $fac\text{-}OsO_3F_2(NCCH_3)$, $mer-OsO₃F₂(NCCH₃),$ and CH₃CN. The NBO results are given in Supporting Information, Table S3. The SVWN and B3LYP results are similar for the experimentally observed fac- and mer-OsO₃F₂(NCCH₃) isomers; therefore, only the SVWN results are referred to in the ensuing discussion.

The NBO analyses give natural population analysis (NPA) charges for Os of 1.83 and 1.76 in fac - and mer- $OsO₃F₂(NCCH₃)$, respectively. The NPA charges of the oxygen, fluorine, and nitrogen ligand atoms are negative with charges that are somewhat less than -0.50 , indicating that the bonds formed with the osmium atom are polar covalent.

The Os-O bond orders (fac, 0.84 and mer, 0.81) are approximately twice the Os-F bond order (fac 0.42 and 0.42 and mer 0.50 and 0.40). The Os-N bond orders indicate that the Os---N bonds have significant covalent character. The Os-N bond order of the fac -isomer (0.29) is significantly less than the Os-N bond order of the mer- $OsO₃F₂(NCCH₃)$ isomer (0.40), indicating that the latter $Os-N$ bond is expected to be stronger than that of the *fac*- $OsO₃F₂(NCCH₃)$ isomer, consistent with its shorter calculated bond length (vide supra) and coordination of the $CH₃CN$ ligand trans to a fluorine ligand.

The charges on the N atoms of the adducted $CH₃CN$ ligands (fac, -0.41 and mer, -0.37) are more negative than that of the free ligand (-0.31) , whereas the charges on the C_1 atoms (fac, 0.49 and mer, 0.53) are more positive than that of CH_3CN (0.28). The C-N bond orders (1.76 and 1.74, respectively) are less than that of the free ligand (1.84). The charge differences and C-N bond orders indicate that the adducted ligand is polarized by the electronegative Os(VIII) center and that significant electron density has migrated from the formal $C-N$ triple bond to the N atom. As expected, the charges, valencies, and bond orders of the $CH₃$ group do not change significantly upon adduct formation.

(c) Calculated Frequencies. The vibrational frequencies, intensities, and assignments for fac- and mer- $OsO₃F₂(NCCH₃)$ were calculated at the SVWN and B3LYP levels (Supporting Information, Table S4) and confirm that the assignments of the experimental vibrational frequencies are consistent with fac -OsO₃F₂-(NCCH3) (see Raman Spectroscopy).

⁽⁴⁵⁾ Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735–746.

⁽⁴⁶⁾ Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. In

NBO, Version 3.1; Gaussian Inc.: Pittsburgh, PA, 1990. (47) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1998, 88, 899– 926.

⁽⁴⁸⁾ Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, C. M.; Morales, C. M.; Weinhold, F. In NBO, Version 5.0; Theoretical Chemical Institute, University of Wisconsin: Madison WI, 2001.

The fac- and mer-isomers cannot be differentiated based solely on the $CH₃CN$ ligand frequencies. The calculated frequencies between 1040 and 3072 cm^{-1} are assigned to the adducted $CH₃CN$ molecule, are comparable for the mer- and fac-isomers, and are in good agreement with the experimental frequencies of the *fac*isomer.

The presence of *mer*-OsO₃F₂(NCCH₃) is discounted for the following reasons: (1) The calculated ν (CC) and v (OsO) stretching frequencies of *fac*- and *mer*-OsO₃F₂-(NCCH₃) occur between 949–988 cm⁻¹ and 888–1002 cm^{-1} , respectively, whereas the experimental $\nu(\text{CC})$ and $v(\text{OsO})$ stretches occur between 910–956 cm⁻¹. The frequency range of the fac-isomer is significantly narrower than that of the mer-isomer and more consistent with the experimental frequency range. (2) The bands associated with the Os-F stretches are coupled in the case of the $fac\text{-}OsO_3F_2(NCCH_3)$ isomer, giving rise to in-phase, $\nu(\text{OsF}_1) + \nu(\text{OsF}_2)$, and out-of-phase, $\nu(\text{OsF}_1)$ $-v(OsF₂)$, modes with frequencies calculated at 564 and 624 cm⁻¹, respectively. In contrast, Os-F stretches of *mer*-OsO₃F₂(NCCH₃) are not coupled, with $\nu(\text{OsF}_2)$ and $v(\text{OsF}_1)$ calculated at 531 and 663 cm⁻¹. When compared with the experimental $v(OsF)$ stretching frequencies of the *fac*-isomer (529 and 598; Δv , 68 cm⁻¹), the calculated difference between the two $\nu(\text{OsF})$ modes of the *mer*- $OsO₃F₂(NCCH₃)$ isomer (Δv , 132 cm⁻¹) is much greater. Overall, the calculated frequencies of fac -OsO₃F₂NCCH₃) provide the best overall agreement with the experimental spectrum.

(d) Relative Stabilities of $fac-OsO₃F₂(NCCH₃)$ and $mer-OsO₃F₂(NCCH₃)$. The reaction enthalpies and Gibbs free energies were calculated for the conversion of $fac\text{-}OsO₃F₂(NCCH₃)$ to mer- $OsO₃F₂(NCCH₃)$ at the SVWN and B3LYP levels of theory at 298, 233, and 193 K (Supporting Information, Table S5). The calculated enthalpy changes demonstrate that the fac-isomer is preferred over the mer-isomer by 114.4(1) (SVWN) and $121.2(3)$ (B3LYP) kJ mol⁻¹, which is consistent with the experimental findings. As expected for an isomerization, the ΔG values at the SVWN (-115.2 to -117.8 kJ mol⁻¹) and B3LYP levels $(-122.6 \text{ to } -123.4 \text{ kJ mol}^{-1})$ do not show a large entropy dependence with little variation in ΔG with temperature.

Conclusions

Fluorine-19 NMR spectroscopy reveals that dissolution of $(OsO₃F₂)_{\infty}$ in CH₃CN solvent exclusively yields *fac*-OsO₃F₂- $(NCCH₃)$, and single-crystal X-ray diffraction has shown that crystallization from $CH₃CN$ solvent at $-45 °C$ yields $fac-OSO_3F_2(NCCH_3)$ ·2CH₃CN. The F₂O₃OsN-moiety in the X-ray crystal structure of fac -OsO₃F₂(NCCH₃) \cdot 2CH₃CN is pseudo-octahedral with the three oxygen ligands in a facial arrangement and the $CH₃CN$ ligand nitrogen coordinated to osmium. The $CH₃CN$ solvent molecules in the crystal lattice can be removed under dynamic vacuum at -40 °C to yield unsolvated fac -OsO₃F₂(NCCH₃). The fac - and mer- isomers of $O₃F₂(NCCH₃)$ were observed in $SO₂ClF$ solvent and confirmed by their spin-spin coupling patterns in their lowtemperature ¹⁹F and ¹⁵N NMR spectra. The Raman spectra of the solids isolated from CH_3CN and SO_2ClF solutions are identical and are attributed to $fac\text{-}OsO₃F₂(NCCH₃).$

The vibrational assignments of fac -OsO₃F₂(NCCH₃) were confirmed by the calculated vibrational frequencies which show better agreement with the experimental results than the calculated values for *mer*-OsO₃F₂(NCCH₃). Thermochemical calculations are consistent with experiment, showing that the *fac*-isomer is favored over the *mer*isomer by about 118 kJ mol^{-1} . Quantum-chemical calculations and the proposed reaction pathways account for why $fac-OSO_3F_2(NCCH_3)$ is observed exclusively in $CH₃CN$ solvent and why a mixture of *fac*- and *mer*- $OsO₃F₂(NCCH₃)$ isomers is observed in SO₂ClF, with the fac-isomer dominating in the latter case. The proposed reaction pathways also account for the absence of *mer*'- $OsO₃F₂(NCCH₃).$

Experimental Section

Apparatus and Materials. Manipulations involving air-sensitive materials were carried out under anhydrous conditions as previously described.³¹ All preparative work was carried out in vessels constructed from $\frac{1}{4}$ -in. o.d. lengths of FEP tubing. The tubing was heat-sealed at one end and connected through a 45° SAE flare to a Kel-F valve. Reaction vessels were dried on a Pyrex glass vacuum line and then transferred to a metal vacuum line where they were passivated with F_2 for several hours, refilled with dry N_2 , and placed in a drybox until used. All vacuum line connections were made by use of $\frac{1}{4}$ -in. 316 stainless steel Swagelok Ultratorr unions fitted with Viton O-rings. Osmium trioxide difluoride, $(OsO₃F₂)_{\infty}$, was synthesized by reaction of $OsO₄$ (Koch-Light, 99.9%) with ClF₃ as previously described.²² Acetonitrile (Caledon HPLC grade) was purified according to the literature procedure⁴⁹ and $CH_3C^{15}N$ (Isotec, $> 99\%$) was dried over $CaH₂$ powder (Aldrich, $90-95%$) for several days followed by vacuum distillation into a dry glass vessel and storage under dry N_2 until used.

Syntheses of $fac-OsO₃F₂(NCCH₃) \cdot 2CH₃CN$ and $fac OsO₃F₂(NCCH₃)$. In a typical synthesis, a fluorine passivated FEP tube was loaded inside a drybox with 0.0545 g (0.1973 mmol) of orange $(\text{OsO}_3\text{F}_2)_{\infty}$ using a Teflon scoop fitted to a $\frac{1}{16}$ in. Ni rod. 23 The reaction vessel was then transferred to a glass vacuum line, and about 0.1 mL of CH3CN was condensed into the tube at -196 °C. Upon warming to -40 °C with agitation, a yellow-brown precipitate and orange supernatant resulted. Excess CH₃CN was removed under dynamic vacuum at -40 °C, initially yielding $fac-OsO_3F_2(NCCH_3) \cdot 2CH_3CN$ which was followed by the formation of fac -OsO₃F₂(NCCH₃) upon further pumping at -40 °C. Both compounds were isolated as yellowbrown solids. The sample composition was monitored by Raman spectroscopy (Supporting Information, Table S1).

Nuclear Magnetic Resonance Spectroscopy. (a) NMR Sample Preparation. Samples for NMR spectroscopy were prepared in 4-mm o.d. FEP tubes that were flared and fitted with Kel-F valves. A sample of $OsO₃F₂(NCH₃)$ was prepared by condensing ca. 0.3 mL of CH₃CN onto 0.0305 g (0.1104 mmol) of $(SO_3F_2)_{\infty}$ contained in a 4-mm NMR tube at -196 °C. The sample was warmed to -40 °C and allowed to react. NMR samples containing fac- $\text{OsO}_3\text{F}_2(\text{NCCH}_3)$ and mer- $\text{OsO}_3\text{F}_2(\text{NCCH}_3)$ [Os $\text{O}_3\text{F}_2(\text{1}^5\text{NCCH}_3)$] in SO2ClF solvent were prepared by condensing ca. 0.02 mL of CH₃CN [0.0065 g, 0.15 mmol of CH₃C¹⁵N] onto 0.0335 g, 0.129 mmol $[0.0208 \text{ g}, 0.0753 \text{ mmol}]$ of $(\text{OsO}_3\text{F}_2)_{\infty}$ in a 4-mm FEP tube at -196 °C. After melting CH₃CN at -40 °C and initial mixing, ca. 0.3 mL of SO₂ClF was condensed onto the mixture at -196 °C. The NMR samples were then heat-sealed under dynamic vacuum and stored at -196 °C until their NMR spectra could be obtained. Samples were dissolved just prior to data acquisition at or below the temperature used to record their spectra. Spectra were recorded by

⁽⁴⁹⁾ Winfield, J. M. J. Fluorine Chem. 1984, 25, 91–98.

inserting the 4-mm o.d. FEP sample tubes into 5-mm o.d. thin-wall precision glass NMR tubes (Wilmad).

(b) NMR Instrumentation and Spectral Acquisitions. Proton, ${}^{13}C$, ${}^{15}N$, and ${}^{19}F$ nuclear magnetic resonance spectra were recorded unlocked (field drift ca. 0.1 Hz h^{-1}) on a Bruker DRX-500 spectrometer equipped with an 11.744-T cryomagnet. The NMR probe was cooled using a nitrogen flow and variabletemperature controller (BVT 3000).

The ^{19}F (^{1}H) NMR spectra were acquired using a 5-mm combination ${}^{1}H/{}^{19}F$ probe operating at 470.592 (500.138) MHz. The spectra were recorded in 64 (32) K memories with spectral width settings of 160 (20) kHz and acquisition times of 0.33 (0.82) s, and were zero-filled to 64 (32) K, yielding data point resolutions of 1.52 (0.61) Hz/data point. Relaxation delays of 0.05 (0.5) s were applied and 1400 (440) transients were accumulated.

The 13 C (15 N) NMR spectra were acquired using a 5-mm broad-band inverse probe operating at 125.755 (50.693) MHz. The spectra were recorded in 32 K memories with spectral width settings of 24 (50) kHz and acquisition times of $0.33(0.17)$ s, and were zero-filled to 16 (16) K, yielding data point resolutions of 1.52 (3.05) Hz/data point. Relaxation delays of 5.0 (5.0) s were applied, and 16 000 (153 000) transients were accumulated.

Pulse widths, corresponding to bulk magnetization tip angles of approximately 90°, were 2.5 (${}^{17}H$), 5.0 (${}^{13}C$), 12 (${}^{15}N$), and 8.5 (${}^{19}F$) μ s. Line broadenings of 0.20 (¹H), 2.0 (¹³C), 0.0 (¹⁵N), and 1.0 (¹⁹F) Hz were used in the exponential multiplications of the free induction decays prior to their Fourier transformations. Gaussian multiplication of the free induction decay was applied to observe the natural abundance 187Os satellites in the 19F NMR spectrum of $fac\text{-}OSO_3F_2(NCCH_3)$ recorded in SO₂ClF solvent at -80 °C.

The ${}^{1}\text{H}$, ${}^{13}\text{C}$, ${}^{15}\text{N}$, and ${}^{19}\text{F}$ spectra were referenced externally at 30 °C to samples of neat liquid $(CH_3)_4Si$ (¹H and ¹³C), $CH₃NO₂$, and $CFCI₃$, respectively. The chemical shift convention used is that a positive (negative) sign indicates a chemical shift to high (low) frequency of the reference compound.

Raman Spectroscopy. The low-temperature Raman spectra of $fac\text{-}OsO_3F_2(NCCH_3)$ (-150 °C) and $fac\text{-}OsO_3F_2(NCCH_3)$. nCH_3CN ($n \geq 2$) were recorded in ¼-in. o.d. sample tubes on a Bruker RFS 100 FT Raman spectrometer using 1064-nm excitation and a resolution of 1 cm⁻¹ as previously described.³ The spectra were recorded using a laser power of 300 mW and a total of 1200 and 300 scans, respectively.

X-ray Structure Determination of $fac\text{-}OSO_3F_2(NCCH_3)$
2CH₃CN. (a) Crystal Growth. Crystals of $fac\text{-}OsO_3F_2$ - $(NCCH₃)$ 2CH₃CN were obtained from a sample composed of 0.021 g (0.076 mmol) of $(\text{OsO}_3\text{F}_2)_{\infty}$ and excess (ca. 0.2 mL) CH3CN in a ¼-in. o.d. FEP beaded reactor with three wells for crystal growth.⁴⁰ The reactor was warmed to -40 °C, whereupon $(OsO_3F_2)_{\infty}$ dissolved, forming a yellow-brown solution. The reactor was placed in a horizontal position, distributing the $CH₃CN$ solution among the three wells that had been blown into the FEP vessel. The solution was maintained between -41 and -45 °C over 6 h, resulting in the growth of light orange blocks while the supernatant solution retained its yellow-brown color. The orange blocks were isolated by removal of the supernatant through a Teflon cannula using an overpressure of argon,⁵⁰ followed by evacuation and drying of the crystalline product under dynamic vacuum at -45 °C for 10 min. A crystal having the dimensions $0.23 \times 0.12 \times 0.09$ mm³ was selected at -105 ± 3 °C for low-temperature X-ray structure determination and was mounted in a cold stream (-173 °C) on a goniometer head as previously described.³

(b) Collection and Reduction of X-ray Data. The crystal was centered on a Bruker SMART APEX II diffractometer, equipped with an APEX II 4K CCD area detector and a triple-axis goniometer, controlled by the APEX2 Graphical

User Interface (GUI) software, 51 and a sealed source emitting graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Diffraction data collection (at -173 °C) consisted of a full ϕ -rotation at a fixed $\chi = 54.74^{\circ}$ with 0.36° (1010) frames, followed by a series of short (250 frames) ω scans at various ϕ settings to fill the gaps. The crystal-to-detector distance was 4.953 cm, and the data collection was carried out in a 512 \times 512 pixel mode using 2 \times 2 pixel binning. Processing of the raw data was completed by using the APEX2 GUI software,⁵¹ which applied Lorentz and polarization corrections to the three-dimensionally integrated diffraction spots. The program $SADABS^{52}$ was used for the scaling of diffraction data, the application of a decay correction, and an empirical absorption correction on the basis of the intensity ratios of redundant reflections.

(c) Solution and Refinement of the Structure. The XPREP⁵³ program was used to confirm the unit cell dimensions and the crystal lattice. The solution was obtained by direct methods which located the positions of the atoms defining $OsO₃F₂$ and the carbon and nitrogen atoms of the $CH₃CN$ molecules. The positions of the hydrogen atoms of the adducted CH_3CN molecule were calculated, and the hydrogen atoms of the free CH3CN molecule were found in the difference map. The final refinement was obtained by introducing anisotropic thermal parameters and the recommended weightings for all atoms. The maximum electron densities in the final difference Fourier map were located near the heavy atoms. All calculations were performed using the SHELXTL-plus package⁵³ for the structure determination, solution refinement, and molecular graphics. The initial choice of space group, Pnma (62), suggested by XPREP, was confirmed by PLATON from the winGX software package.⁵⁴

Computational Methods. The optimized geometries and frequencies of $fac\text{-}OsO_3F_2(NCCH_3)$, mer- $OsO_3F_2(NCCH_3)$, and $CH₃CN$ were calculated at the SVWN and B3LYP⁵⁵ levels. The Stuttgart semirelativistic large core and effective core pseudopotential basis sets (SDDall) augmented for F and O with two dtype polarization functions by Huzinaga⁵⁶ were used for the SVWN level. At the B3LYP level, the Stuttgart effective core potential with the corresponding basis set augmented by one ftype polarization function (α_f Os 0.886)⁵⁷ was used for osmium and the aug-cc-pVTZ basis sets were used for hydrogen, carbon, nitrogen, oxygen, and fluorine. Pseudopotentials were used with the Stuttgart basis set for osmium. For the attempted optimization of cis, trans- $OsO₃F₂$, aug-cc-pVTZ basis sets for F and O were used, and the aug-cc-pVTZ-PP basis set for osmium was used. Their combined use is indicated by aug-cc-pVTZ(-PP). Quantum-chemical calculations were carried out using the program Gaussian 03.⁵⁸ The levels and basis sets were benchmarked by calculating cis -OsO₂F₄²³ and CH₃CN¹¹ as previously described. The geometries were fully optimized using analytical gradient methods. After optimization at one level of theory, the geometries were calculated at the other level of theory to ensure an equivalent energy-minimized geometry

⁽⁵⁰⁾ Brock, D. S.; Bilir, V.; Mercier, H. P.; Schrobilgen, G. J. J. Am. Chem. Soc. 2007, 129, 3598–3611.

⁽⁵¹⁾ APEX2, Release 2.0-2; Bruker AXS Inc.: Madison, WI, 2005.

⁽⁵²⁾ Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Corrections, version 2.10; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 2004.

⁽⁵³⁾ Sheldrick, G. M. SHELXTL-Plus, release 6.14; Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 2000-2003.

⁽⁵⁴⁾ Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837–838. (55) Frisch, M. J. et al. Gaussian 03, Revision B.04; Gaussian, Inc.: Pittsburgh, PA, 2003.

⁽⁵⁶⁾ Huzinaga, S.; Andzelm, J.; Kolobukowski, M.; Radzio-Andzelm, E.; Sakai, Y.; Tatewaki, H. Gaussian Basis Sets for Molecular Calculations; Physical Science Data 16; Elsevier: Amsterdam, 1984.

⁽⁵⁷⁾ Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111–114.

⁽⁵⁸⁾ Frisch, M. J. et al. Gaussian 98, Revision A.11; Gaussian, Inc.: Pittsburgh, PA, 2003.

4780 Inorganic Chemistry, Vol. 49, No. 11, 2010 **Hughes et al. Hughes et al. Hughes et al.**

had been achieved. The vibrational frequencies were calculated at the SVWN and B3LYP levels using the appropriate minimized structure, and the vibrational mode descriptions were assigned with the aid of Gaussview.⁵⁹

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for the award of postgraduate scholarships (M.J.H.) and for support in the form of a Discovery Grant (G.J.S.). We also thank the Ontario Ministry of Education and the Richard Fuller and James A. Morrison Memorial Funds for the award of graduate scholarships (M.G.). The calculations were conducted with the aid of the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.Sharcnet.ca).

Supporting Information Available: Raman spectra acquired during the removal of CH_3CN from a CH_3CN solution of fac $OsO₃F₂(NCCH₃)$, and the Raman spectra of uncoordinated CH₃CN and of fac -OsO₃F₂(NCCH₃) isolated from SO₂ClF (Table S1); unit cell of $fac\text{-}OsO_3F_2(NCCH_3) \cdot 2CH_3CN$ viewed along the *a*-axis (Figure S1); Raman spectrum of $OsO₃F₂$ - $(NCCH₃) \cdot nCH₃CN$ (Figure S2); factor-group analysis for fac- $OsO₃F₂(NCCH₃) \cdot 2CH₃CN$ (Table S2); calculated gas-phase geometry (SVWN) for CH₃CN (Figure S3); natural bond orbital (NBO) valencies, bond orders, and natural population analysis (NPA) charges for fac -OsO₃F₂(NCCH₃), mer-OsO₃F₂- $(NCCH₃)$, and $CH₃CN$ (Table S3); calculated vibrational frequencies, intensities, and assignments for fac- and mer- $OsO₃F₂(NCCH₃)$ (Table S4); calculated gas-phase ΔH and ΔG values for the conversion of fac-OsO₃F₂(NCCH₃) to mer- $OsO₃F₂(NCH₃)$ (Table S5); complete references 55 and 58; and the X-ray crystallographic file in CIF format for the structure determination of $OsO₃F₂(NCCH₃) \cdot 2CH₃CN$. This material is available free of charge via the Internet at http://

⁽⁵⁹⁾ GaussView, release 3.0; Gaussian Inc.: Pittsburgh, PA, 2003. pubs.acs.org.